
C1 TECHNICAL REPORT-001 '7.'

-F
I

14 1
"' FEB 18, .-

COMPUTER VIRUSES:

PREVENTION, DETECTION, AND TREATMENT

12 March 1990

Approved for Public Release:
Distribution Unlimited

20080226275

C1 TECHNICAL REPORT-001
Library No. S232,522

FOREWORD

This C1 Technical Report, "Computer Viruses: Prevention, Detection and Treat-
ment," is issued by the National Computer Security Center (NCSC) under the author-
ity of and in accordance with Department of Defense (DoD) Directive 5215.1, "Com-
puter Security Evaluation Center." This publication contains technical observations,
opinions, and evidence prepared for individuals involved with computer security.

Recommendations for revision to this publication are encouraged and will be re-
viewed periodically by the NCSC. Address all proposals for revision through appro-
priate channels to:

National Computer Security Center
9800 Savage Road
Fort George G. Meade, MD 20755-6000

Attention: Chief, Criteria and Technical Guidelines Division

Reviewed by: &1~ LAA.A.A ~ 12 March 1990
BLAINE W. BURNHAM
Chief, Criteria and Technical Guidelines Division

Released by: a -v- 9Y 12 March 1990
ELIOT SOHMER
Chief, Office of Computer Security Evaluations,
Publications and Support

Contents

FO REW O RD ... i
Executive Sum m ary .. 1

I. Introduction: The Sym ptoms .. 1
II. Treatm ent and Prevention .. 3

A. Technical M easures ... 3
1. Trusted Computing Base 3
2. Access Controls .. 4

a. Discretionary Access Control (DAC) 4
b. Mandatory Access Control (MAC) 5

3. A ud it Trails .. 6
4. A rchitecture ... 7
5. Least Privilege/Role Enforcement 8
6. Identification and Authentication 9

B. Procedural and Administrative Measures 9
1. Passwords and Password Management 10
2. Configuration Control 11

3. Operational Procedures 11
4. Facility M anagement 11
5. User Aw areness ... 12
6. System Evaluations 13

C. Synopsis of Countermeasures 13
I11. Sum m ary .. 15

APPENDIX .. 17
I. T he Issue ... 17
II. The A nalysis .. 17

a. Infection......... 17
b. Effects of the Virus ... 19

References .. 20

ii

COMPUTER VIRUSES:

PREVENTION, DETECTION, AND TREATMENT

Executive Summary

There has been, of late, considerable interest in the topic of computer viruses. The
debate has been especially brisk since the so-called "Internet Virus" of November
1988. At one extreme are those who declare that viruses are an essentially new
phenomenon, against which we are powerless. At the other end of the spectrum
are those who treat viruses as more of a semantics problem than a technical one,
claiming that the problems they pose have already been solved under different ter-
minology. Where then is reality? This paper makes the case that the situation, while
certainly not ideal, is not nearly as bleak as some of the alarmists would claim, and
that existing technology and security-oriented procedures are extensible to the virus
threat. Further, these are largely captured in the DoD Trusted Computer System
Evaluation Criteria (TCSEC). However, while the available techniques are relevant,
they supply only partial solutions; perfect and universal countermeasures against all
possible virus scenarios do not exist. If we are to determine whether or not such
are possible, much less develop them, further R&D activity is required.

I. Introduction: The Symptoms

Viruses are a form of the classical Trojan Horse1 attacks and are characterized by
their ability to reproduce and spread. However, like all Trojan Horses, they first
must be "imported" and executed by an authorized user; the attacker typically
dupes an unsuspecting individual into accepting and executing the virus. The mali-
cious code may be buried in what are presented to be otherwise useful utilities (e.g.,
spreadsheets, text editors), which then operate with the user's own authoritzations to

1. A Trojan horse is a piece of code which has an ostensibly legitimate and useful function, such as a
sort/merge routine or a regression analysis package. It also contains a hidden function, such as copying files or
changing access control parameters. The Trojan horse is then presented to an authorized user as a useful and
desirable function which, when it is executed, also carries out its covert function, potentially undetected. This
class of attack earned the term "Trojan horse" from the original of Greek mythology, signifying a gift which
conceals a malicious purpose.

1

cause harm. The offending code may be present in a code segment the user
"touches," which then attaches itself to the user's program, without the user ever re-
alizing that he is importing a virus. For instance, a virus may be implanted in system
library utilities (e.g., sort/merge routines, mathematics packages) and servers.

While a virus (or Trojan Horse) is normally considered to be limited to the authoriza-
tions of the user who is executing the code, the virus can clearly exploit any flaws in
the system that would allow the user to enter privileged state (although such attacks
are more correctly seen as traditional penetration attacks). If the user who executes
the infected code has system privileges (e.g., a system administrator), then the virus
will be able to do still more severe damage, depending upon the specific privileges

available to it.

The critical point is that viruses depend upon their ability to exploit the legitimate ca-
pabilities of authorized users. In order to be successful, a virus must replicate and
infect other programs without detection.

2

II. Treatment and Prevention

As with their biological namesakes, computer viruses come in a variety of types;
their missions can be modification or theft of data, or denial of service. Their meth-
ods of attack will be as numerous and varied as the weaknesses manifest in sys-
tems. Thus, perfect and universal solutions are not likely; there will be no single so-
lution developed capable of preventing any and all virus attacks. Such a solution is
certainly not currently available. However, that is not to say that we are powerless
to combat viruses, contain their effects, or limit their capability to do damage. The
defenses against viruses are both technical and procedural. More specifically, the
principles and mechanisms provided in the TCSEC, especially at class B2 and
above, provide a variety of valid defenses against a large class of malicious code
and, when applied effectively, can severely limit both the scope of the attack and the
extent of the damage.

A. Technical Measures

1. Trusted Computing Base

The TCSEC has, as a central theme, the extremely strong notion of a Trusted Com-
puting Base, or TCB (i.e., the implementation of the Reference Monitor concept). In
essence, the TCB is the central policy enforcement mechanism for the computer
system, mediating the actions of all system users and user processes. Among the
important characteristics of the TCB is that it be always invoked (i.e., unbypassable,
mediates each and every access) and self-protecting (i.e., cannot be modified by
user code). The consequence of requiring architectures that provide such mecha-
nisms is to limit the ability of hostile code to subvert the TCB. Beginning at the C1
level of trust, fundamental protection mechanisms are required that provide protec-
tion of the system programs and data from unprivileged users. Many existing sys-
tems (e.g., PCs running DOS) lack even these basic protections required at C1, thus
allowing a virus executed by any user to infect any part of the system, even those
most basic to system operation and integrity. Commencing with the B2 level of
trust, we expect that there will be no fundamental design flaws that allow the security

3

mechanisms to be circumvented. Thus, in the absence of penetration paths, a virus

would be limited to attacking users on an individual basis. This means that the rate

at which it could propagate would be reduced, as would the damage it could inflict.

It can be argued that a virus capable of infecting each and every user in the system

(one that was present in the text editor, for instance) would be reasonably effective
at accomplishing some missions (e.g., denial of service). Thus, the value of an in-
tact TCB in the face of an otherwise completely infected user population is moot.

However, it is still true that a strong and self-protecting TCB, at a minimum, forces a
virus to infect users one at a time. It can also prevent some forms of attack (see
2.b, Mandatory Access Controls, below), and assure the existence and protection of

the audit data by which viruses may be detected and traced. In fact, a strong TCB
represents the central protection mechanism that a virus must overcome in order to
infect the text editor in the first place.

2. Access Controls

Among the fundamental principles that provide the foundation to the TCSEC is that

of policy enforcement, the need for the computer system to enforce an access con-
trol, or sharing, policy. For both technical and historical reasons, the principle of
policy enforcement translates in the TCSEC into access control mechanisms. Spe-
cifically, these are:

a. Discretionary Access Control (DAC)

Discretionary Access Control provides the mechanisms that enforce user-defined
sharing, also known in some communities as "need-to-know." Beginning at C1, the
TCSEC requires that it be possible for the owner or manager of each data file to

specify which users may access his data, and in what modes (e.g., Read, Modify,
Append). Clearly, such a mechanism provides control over both acquisition and

modification of data by Trojan horses and viruses. In order for the malicious code

to carry out its mission, it would have to be executed by someone who already pos-

sessed valid permissions against the data being targeted. If that user is not the
owner, then the capability of the attack code to do harm would be limited by the al-

4

lowed permissions (e.g., if the user who was being attacked had "READ-ONLY" ac-
cess, the attack code could copy the data, but could not modify or erase it). While
discretionary access control mechanisms provide relatively weak protections, they
do constitute a hurdle that a virus must overcome, and can slow the rate at which
the virus propagates.

b. Mandatory Access Control (MAC)

Mandatory Access Control provides those mechanisms that enforce corporate policy
dealing with the sharing of data. Examples of such polices would be: "only mem-
bers of the payroll staff may read or change payroll data," and "classified data may
only be accessed by those having the appropriate clearances." Beginning at the B1
level, the TCSEC requires computer systems to be capable of enforcing MAC as
well as DAC. That is, the system must be able to enforce those more formal rules
dealing with either, or both, levels of sensitivity (e.g., DoD classification scheme) and
categories of information (e.g., payroll, medical, R&D, corporate planning). Thus,
the ability of a user to access and manipulate data is based upon the comparison of
the attributes of users (e.g., "member of payroll department," "member of R&D
staff," "management," or "clearance level") with the attributes of the data to be ac-
cessed (e.g., payroll data, R&D data, classification level). Because it is required that
the TCB control and protect these attribute designators (or, "labels"), they constitute
a "hard barrier" for a virus, effectively limiting the scope of what it may do; in a
properly designed and implemented system a virus would be unable to effect any
changes to the labels. This means, for instance, that a virus that is being executed
by someone in the PAYROLL department would be limited to doing damage strictly
within the set of data that is labelled accordingly. It would have the potential to
modify or destroy PAYROLL data, but not to access R&D or MEDICAL data. Addi-
tionally, a virus could not change any labels, which means that it is unable to cause
PAYROLL data to be passed to anyone who is not a member of the payroll staff.
Likewise, a virus could not cause "SECRET" data to be downgraded. In short, MAC
is an extremely strong mechanism, which prevents any process, including a virus,
from making properly labeled information available to users who are not authorized
for the information. Systems that achieve TCSEC levels of B2 or greater essentially
guarantee that information will not be "compromised," i.e., no malicious code can
violate the restrictions implied by the labels.

5

It needs to be noted that the way in which mandatory controls are typically used is
to prevent compromise, which is to say that the emphasis is on preventing "high"
data from being written into a "low" file. This does not, in itself, prohibit viruses
from propagating, either via a "low" user writing into a "high" file, or a "high" user
importing software from a "low" file. However, it should be noted further that the
mandatory controls provide the opportunity for implementing similar controls for writ-
ing (or importation) as for reading. Such controls are usually seen as implementing
mandatory integrity policies, such that the ability to modify files is based upon a set

of integrity labels, analogous to the classification labels used to regulate the reading
of data. Some systems exist (e.g., Honeywell SCOMP) that have implemented such
mechanisms.

3. Audit Trails

The collection of audit data is a traditional security mechanism that provides a trace

of user actions such that security events can be traced to the actions of a specific
individual. The TCSEC requires, commencing at class C2, that the TCB "...be able
to create, maintain, and protect from modification or unauthorized access or de-
struction an audit trail of accesses to the objects it protects." Because an effective
virus depends upon its ability to infect other programs and carry out its mission with-
out detection, audit data provides the basis not only for detecting viral activity, but
also for determining which users have been infected (i.e., by identifying which user
is responsible for the events in question). Clearly, the collection of data is merely
the foundation for detection. To fully implement a sound program, audit reduction
and analysis tools are also required. These are also provided for in the TCSEC.
Considerable advancement in this arena is reflected by the recently developed intru-
sion detection systems; sophisticated real-time audit analysis and event-reporting
systems, some based on artificial intelligence (or, "Al") techniques. These typically
provide extensive capability for detecting a variety of anomalous behavior, and thus
can be "tuned" for known or suspected viral patterns. While the available systems
are still largely developmental, the early results are quite promising.

6

4. Architecture

While it is certainly important to identify the correct set of security features that are
needed in a system, it is equally important to provide the assurances that the fea-
tures work as intended, are continually present, and are uncircumventable. Such
assurances are provided by the underlying architecture, namely, the hardware sup-
port for the features, and the hardware and software design. The TCSEC stresses
the importance of architecture and adequate hardware support for the security
mechanisms. Even at the lowest level of trust defined by the TCSEC (i.e., Cl) fun-
damental protection mechanisms are required that provide protection of the systems
programs and data from unprivileged users. Such protection is usually implement-
ed by multistate hardware. Starting with B2, the TCSEC places strong emphasis
upon design, design analysis, and architectural features that provide for isolation of
user programs from each other as well as isolation of system programs from user
programs. Such mechanisms not only prevent viruses from casually infecting sys-
tem programs (e.g., the TCB), but also make it more difficult for the virus to spread
from user to user.

As an example of the gain to be realized by the right choice of system architecture,
type-enforcement architectures2 are worthy of special note. These systems provide
the potential for extremely fine-grained control of executing code, such that a virus
would be incapable of performing any action that is not explicitly allowed by the
type-enforcement mechanism. And, because all access to data and resources is
via a common, central mechanism (i.e., the type manager), protection need only be
focused on the code authorized to manipulate the data and resources, rather than

2. While a complete description of type-enforcement, or object-oriented, systems is beyond the scope of this
paper, such systems are characterized by their ability to support an arbitrarily large number of tightly defined
classes (or "types") of objects (e.g., "bank account," "payroll record," "budget record"), each with specific
attributes. These objects, while they may even contain identical data elements (i.e., both "bank account" and
"payroll record" may have an individual's name and id number), permit well-defined rules of access for each
individually defined object type. Objects are addressed as an entirety; their internal structure is not visible to the
user. Additionally, machine support is provided for the manipulation of objects (i.e., objects are "encapsulated"),
through a code segment known as a type-manager. Consequently, actions against each object type can be
constrained to an arbitrary degree (see example in text), because access to each object is permitted only via the
appropriate type-manager, which enforces the constraints on the object type. New object types may be defined
and created at will, as the need arises, requiring only that a type-manager be implemented which enforces the
constraints defined for the new object type.

7

attempting to protect all user programs. By way of illustration, such systems could
quite easily enforce the following policy, or set of access rules, which a bank might
wish to enforce:

" Tellers may make changes only to those accounts for which they are autho-
rized.

* They may only make changes to specific fields (e.g., may not change the ac-
count number, depositor name).

" They may only make the changes authorized between the hours of 9:00 a.m.

and 5:00 p.m., Monday through Friday.

* Transactions that exceed $1,000 require the authorization of a supervisor,
while transactions that exceed $5,000 require the authorization of the bank
manager.

The capabilities of a virus that attached itself to a teller's process in such a system
would be, mildly speaking, somewhat circumscribed.

5. Least Privilege/Role Enforcement

A virus that is executed by a user with privilege (i.e., a user that is permitted by the
system to circumvent some part or all of the system's security policy) provides an
enormous threat to the entire system, because, in assuming the legitimate user's
identity, it would be able to circumvent the normal controls that protect other users'
programs and data. In many systems, the virus would also be able to circumvent
the controls that protect the system itself from modification.

Least Privilege is a familiar concept in the computer security community, and deals
with limiting damage through the enforcement of separation of duties. It refers to
the principle that users and processes should operate with no more privileges than
those needed to perform the duties of the role they are currently assuming. That is,
a user who may take on more than one role or identity (e.g., administrator and un-
privileged user, Project A and Project B), should only be given the authorizations
needed at the moment, rather than all the privileges he can assume for any and all

8

roles that may be assumed. In contrast, many current systems support only a sin-
gle, all-powerful system administrator (note especially, the UNIX role of "superus-
er"). Beginning at the B2 level, trusted systems limit the capabilities of privileged
users to those capabilities necessary to accomplish the prescribed task. Beginning
at the B3 level, privileged users cannot, in their privileged roles, execute any non-
TCB code. The consequence is that, in such a system, a virus could not infect a
privileged user's programs, and thus could not exercise his privileges. In addition,
at B3 and higher, privileged functions that may modify any security-critical system
data or programs require the use of "trusted path" (i.e., require an explicit, unforge-
able, action from the privileged user) in order to prevent these actions from being
performed without the explicit knowledge and cooperation of the privileged user.
This means that no virus could affect security critical data or programs surreptitious-
ly, since it could not cause any modifications without the privileged user becoming
aware of the requested actions, thus making the virus visible.

6. Identification and Authentication

Identification and authentication ensures that only authorized users have any access
to the system or information contained on the system. It also forms the basis for all
other access control mechanisms, providing the necessary user identification data
needed to make decisions on requested user actions. Furthermore, identity is a fun-
damental requisite for auditing; knowing the identity of the person on whose behalf a
virus was executed may be essential for tracking down the offending code and de-
termining countermeasures. While passwords are the oldest and perhaps the most
familiar form of personal identifiers used to authenticate users to computer systems,
also available today are biometric techniques and "smart card" devices.

B. Procedural and Administrative Measures

While technical measures are necessary for controlling what code segments a pro-
cess may access, what actions it may take, and the conditions under which it can
operate (i.e., what goes on inside the computer), total system security also involves
effective site security procedures and system management. This is particularly true

9

because poor procedures can negate the positive effects of some of the technical
controls. As an example, audit data collected by the system, and the availability of
even the most sophisticated audit analysis tools are of little value if the audit logs
are never reviewed, nor action ever taken as a result of questionable activity.

The following should in no way be seen as an exhaustive list of procedures and
management practices effective in addressing the virus threat. Rather, it is intended
to be merely illustrative of the manner in which procedural controls are complemen-
tary of technical capability.

1. Passwords and Password Management

Historically, passwords have been among the first targets on which an attacker
would focus attention. They have traditionally been an easy target with high payoff
potential. Because a person's password is often the key to all his data and authori-
zations, they are analogous to a safe combination. By extension, attacking the
password file is akin to targeting the safe that holds the combinations to all the other
safes in the building. Thus, good password management and practices can go a
long way toward limiting virus attacks. A virus counts on its ability to infect other
programs. Thus, either the target must import the virus and execute it as his own
(i.e., with his own privileges and authorizations), or the virus must be able to "be-
come" the user to be infected by invoking his password. (It might be noted, in
passing, that the November 1988 Internet virus contained extensive password at-
tacks). If the virus cannot successfully log in as an arbitrary user (e.g., by stealing
or guessing valid passwords), then it is limited to attempting to fool users into ex-
ecuting the virus code. The trivial ease with which user passwords can be guessed
and entire password files can often be attacked is usually nothing short of shocking.
Truly effective countermeasures to such attacks are easy to implement and relative-
ly inexpensive. They often amount to not much more than sensible management.

10

2. Configuration Control

A virus represents code that was not intended to be part of a program or the sys-
tem. Thus, procedures for maintaining valid and known system configurations, for
validating and approving shared code (e.g., software library routines), and for distrib-
uting approved programs and media (e.g., diskettes) can provide further obstacles
to viral infestation.

3. Operational Procedures

While there may be some commonality across computer sites, it is also true that
each site will offer its own unique set of problems. Thus, operational procedures
typically need to be tailored to fit the needs of the particular environment, and defen-
ses against viruses will need to be designed into the procedures that govern the
day-to-day operation of the site. As an example, recovery from a known or suspect-
ed virus attack might require a clean copy of the system. This, in turn, implies pro-
cedures for verifying the source and correctness of the backup copy, protecting it
from modification until it is to be installed, and for installing it safely. Likewise, man-
agement policies and procedures dealing with the importation of code can also pro-
vide a measure of resistance to viruses. The establishment of the policy will tend to
heighten awareness of the danger of bringing unknown software into the work envi-
ronment, while effective procedures for controlling the importation of software will
make it more difficult for a virus to be introduced.

4. Facility Management

While a computer system may provide a variety of security-related mechanisms,
they must be used and, more importantly, used correctly, if any measure of protec-
tion is to be achieved. Large, complex systems offer a special challenge, in that
there are typically a variety of configuration options, and can support a large number
or users, which may be grouped into different "communities" and classes, each with
unique attributes, security restrictions and privileges, and with a different view of the

11

system. This translates into a particularly difficult job for the system security admin-

istrator; it is imperative that he get everything right simultaneously. There will be

many opportunities to configure the system such that needed security features are

not active, or that the choice of options invalidates the action of a security feature

that was activated. The second case is probably worse, because the security ad-

ministrator believes that he has activated a security feature when, in fact, he has in-

advertently caused the desired protection mechanism to be rendered ineffective. In

short, the desired security characteristics of the system, while achievable, can easily

be lost in the complex detail of configuring and maintaining an operational environ-

ment. Thus, it is critical that there be support for the system administrators such

that they can make effective use of the available security features of, and configure

and provide life-cycle support for, the level of policy enforcement needed. Toward

this end, the TCSEC, at all levels, demands that the vendor provide the purchaser of

the product a "Trusted Facility Manual," a document that describes, in a single vol-

ume or chapter, all the security mechanisms supported by the system, and provides

guidance on how to use them. It is a document aimed explicitly at the system secu-

rity administrator, and as such, it provides the information necessary to fully under-

stand system security mechanisms, how to use them properly, and the potential

harm of poor implementation and configuration choices (e.g., insufficient auditing).

5. User Awareness

Virtually every shared-resource system available today provides facilities for users to

specify some level of protection for their data. These may be in the form of

User/Group/World mechanisms, Access Control Lists (ACLs), or other features that

allow users to specify how, and with whom, information is to be shared. However, in

order to be effective, the features must first be used, and they must also be used

properly. This clearly means that the users need to be cognizant of the protection

features that are provided to them, and understand how they operate. Here also,

the TCSEC provides support for this level of user awareness in that it requires that

the vendor provide a separate document (i.e., the Security Features User's Guide),

explicitly aimed at system users, which apprises them of the security mechanisms

that are available to them. While, as noted earlier, most user-specifiable protection

mechanisms are not proof against determined hostile attack (at least, not in most

12

current implementations), such protection features do provide a barrier that a virus

must overcome; it is clearly easier to steal or damage files that are not protected

than those that are. It is certainly easier for a virus to escape detection if there exist

no system-enforced prohibitions against the actions it is attempting to carry out.

6. System Evaluations

It is standard practice, at least within the DoD and Intelligence communities, to have

systems undergo an accreditation process, a formal and reasonably well-defined

process for determining the acceptability of systems. The critical facet of the pro-

cess is centered about the "certification," which involves the assessment of the sys-

tem capabilities as measured against the original requirements definition (e.g., the

RFP, system specifications), and typically also takes into account any system vulner-

abilities that have been discovered. The certification process is a technical assess-

ment of the system, and thus subjects the system to some level of technical scruti-

ny. Thus, any flaws, either in system design or in implementation detail, are more

likely to be discovered. This is a direct benefit of the current evaluation process di-

rected toward the evaluation of products against the TCSEC. The evaluation pro-

cess will, in addition to assuring that the TCSEC requirements are satisfied, tend to

discover and correct poor design, poor implementation choices and, in some cases,

will discover and correct penetration paths. Clearly, processes that find and correct

errors and eliminate penetration paths will tend to raise the cost to the attacker.

C. Synopsis of Countermeasures

As discussed earlier, the mission of a virus can be classified as one or more of the

standard threats to information security, namely, unauthorized modification, unau-

thorized disclosure, and denial of service. Technical as well as procedural and ad-

ministrative countermeasures exist that address these threats, and thus will, in gen-

eral, limit the success of malicious code attempting to carry out such attacks.

13

a. Identification and authentication, discretionary access controls, process isolation,
and auditing are relevant countermeasures for the virus whose mission is to destroy
or modify user data. Likewise, TCB protection, least privilege, trusted path, and au-
diting will also serve as valuable countermeasures against the virus whose mission
is to destroy or modify system programs and data structures.

b. Identification and authentication, mandatory access controls, and discretionary ac-
cess controls provide effective countermeasures against viruses whose mission is to
cause unauthorized disclosure of information.

c. Because infection requires that the virus be able to modify or replace some exist-
ing program, all of the technology and procedural countermeasures that are de-
signed to prevent unauthorized modification of programs will make it harder for a vi-
rus to attach itself to legal user processes.

d. The current state of the art in computer security provides only very limited coun-
termeasures against denial of service. Identification and authentication mechanisms
ensure that only authorized users have access to system resources, while auditing
allows the system administrator to determine to what extent particular users use or
abuse system resources. These controls thus ensure that a virus can attack only
those system resources that the infected user is allowed to use, as well as keeping
a record of utilization that may make virus detection easier.

14

III. Summary

Clearly, as stated above, there are no universal cures; no single set of procedures

and technical measures guaranteed to stop any and all possible virus attacks. How-

ever, this is not different from any other everyday security situation. Specific mecha-

nisms tend to be designed to combat specific dangers, in the same way that vac-

cines are developed to combat specific diseases. Thus, preventive measures are
intended to raise the cost of attacks, or to make it less likely that a specific class of

attack will be successful. Similarly for viruses. While viruses can exploit any and

all flaws in our computer systems and networks, they also tend to be classes of at-

tacks with which we are already familiar. Thus, while there is valid concern for our

vulnerability to virus attacks, a dispassionate analysis shows that our previous exper-
ience in computer security is relevant - the protective measures and technology we

have developed are directly applicable, and provide a good baseline for making

headway against these attacks. In addition, good environmental controls are critical;
while technical measures are necessary for controlling what data and resources a

user process may access, what actions it may take, and the conditions under which

it can operate (i.e., what goes on inside the computer), total system security also in-

volves effective procedures and system management.

On the one hand, it may be argued that viruses present no new technical chal-
lenges. The attacks they carry out are the attacks that have been postulated virtual-
ly since the advent of time-sharing. However, the intellectual process is such that

one determines a threat, or attack scenario, and then develops specific counter-

measures. Thus, the classical approach has led us to consider attacks and develop

responses on an individual basis. A virus not only propagates, but may also carry

out any or all known attacks, thus potentially presenting us with a universal set of at-

tacks in one set of hostile code. However, what is truly revolutionary about viruses

is that they change the way in which we will have to view the processing and com-

munications support available to us, in the same way that "letter bombs" would

cause us to radically change the way we viewed the postal system, i.e., from benefi-

cial and useful to hostile and potentially dangerous. Where we have previously put
great confidence in our computing resources ("If the computer said it, it must be

correct"), we will now have to consider those resources as potentially hostile.

15

Viruses also will cause us to change our view of the very intellectual environment -

the sharing of software can no longer be as casual as it was once was. Perhaps
this should not be surprising. The attacks that were originally postulated and de-
signed against (e.g., penetrations, Trojan horses, trapdoors) were predicated on a
relatively uncomplicated computing environment. The communications explosion
now confronts us with a considerably more complex, richly interconnected comput-
ing and communications environment. In this environment, viruses are the concern.
This means that, while our previous experience is extensible to the new threats,
R&D is still needed. While there is considerable debate over whether or not viruses
present a completely new set of problems, there is certainly no disagreement con-
cerning our abilities to combat them; most will concede that, at best, today we have
only partial solutions. Perfect solutions may be possible, but a better understanding
of the root technical issues, development of theory, and testing of countermeasures
is required before we can know for certain.

In short, viruses and other forms of malicious code are seen as an extension of
classical computer security threats into the current computing and communications
environment. The capabilities we have already developed to combat the threats of
yesterday apply perfectly well against viruses, but are not perfect solutions. If we
are to develop still better solutions, R&D in this area is critical.

16

APPENDIX

Analysis of Internet Virus

and the Evaluation Process 3

I. The Issue

Among the first questions asked within the NCSC immediately following the Novem-

ber 1988 Internet Virus attack was, "Could the attack have been prevented, or at
least ameliorated, by the product evaluation process?" It is instructive to determine

the impact the TCSEC requirements and the current evaluation process would have

had on the virus and the flaws it was able to exploit.

The following assumes that the reader is familiar with the details of the specific at-

tacks, and no effort is made to describe or otherwise elaborate on the technical de-
tails of the virus.

II. The Analysis

The question to be answered is, "What effect would trust technology and/or product

evaluation have had on the effectiveness of the virus?" The responses fall into two
main areas: methods of attack (i.e., which flaws or features were exploited), and the

effects of the attack.

a. Infection

The virus used three methods to infect other systems: 1) a subtle bug in the "fin-

ger" daemon software, 2) the "debug" feature of the "sendmail" program, and 3)

the ability of a user to determine other users' passwords.

3. This section draws heavily from analysis performed by Mr. Grant Wagner, Chief Evaluator of the Product
Evaluations Division of the National Computer Security Center.

17

The bug in the "finger" daemon (or, fingerd) software would likely not be caught in
a C1-B1 level evaluation. There is a moderate chance that it would have been
found in a B2-A1 evaluation. If discovered in any evaluation, a fix would not have
been required by the NCSC as the problem would not affect the system's ability to
enforce the security policy; it does not appear in the TCB, but rather in user space.
Most vendors would, however, fix the bug simply to make the system more robust.

At the same time, it is important to note that this attack was successful largely be-
cause other routines, which made use of fingerd, did not perform the bounds
checks required to catch the error being exploited. A system being designed
against the TCSEC would be sensitive to the need for complete parameter check-
ing, at least for security-critical or otherwise privileged codes. Additionally, the eval-
uation process, at any level, would likely identify fingerd as code being used by
privileged programs, thus raising the probability that the flaw would either be found
or obviated. This is clearly the case for systems at B2 and beyond; while the flaw
that allowed the virus to attack users might still appear (depending on the implemen-
tation choices made), the B2 requirements are such that privileged processes would
not be dependent on any unevaluated code.

The debug feature of sendmall had a moderate chance of being discovered in a
C1-B1 evaluation. The feature would almost certainly have been discovered in a
B2-A1 evaluation. When discovered, the team would only have been able to require
the vendor to document the feature, as its presence would not affect the system's
ability to enforce the security policy.

Here also, it is fair to point out that in a product that was designed to conform with
TCSEC requirements, sendmall might well have been seen as integral to the TCB
(i.e., a security-critical process). As such, it would have been more closely scrutini-
zed and, beginning at B2, been subjected to penetration testing. To the extent,
however, that sendmall is strictly within user space (i.e., not within the TCB bound-
ary), the evaluation process is not likely to turn up flaws such as was exploited by
the virus.

18

The ability of a user to generate other users' passwords as a result of being able to
read the password file (albeit encrypted) would have been detected in any evalua-
tion, and the vendor would have been required to correct the problem. It is impor-
tant to note that the virus contained an extensive capability to guess user pass-
words. While it is not clear to what extent the virus actually resorted to this attack,
inexpensive and well-known password management procedures would have a major
impact on password attacks, and thus would considerably impair the propagation
rate of any virus that depended on them.

b. Effects of the Virus

The primary effect of the virus was the consumption of processor time and memory
to the point that nonvirus processes were unable to do any useful work. For the
systems in question any valid user could have produced the same effect because
the system enforces few useful limits on resource utilization. The current state of
the art in trust technology provides no better than partial solutions for dealing with
the issues of inequitable use of system resources. B2-A1 evaluations will address
so-called "denial of service" problems, but the presence of problems of this type will
not adversely affect the rating. That is, evaluators will look for, and report on, at-
tacks that can monopolize system resources or "crash" the system. However,
since no objective way yet exists to measure these effects, they do not influence the
rating. Instead, it is left to the accreditation authority to determine the impact in his
environment, and to implement any necessary countermeasures (e.g., quota man-
agement routines, additional auditing).

19

References

1. Continuing Education Institute, "Software-Oriented Computer Architecture,"
Course notes, 1984.

2. Department of Defense, Department of Defense Trusted Computer System Evalu-
ation Criteria (DoD 5200.28-STD), December 1985.

3. Gasser, M., Building a Secure Computer System, Van Nostrand Reinhold, 1988.

4. Gligor, V. D., "Architectural Implications of Abstract Data Type Implementations,"
Proceedings of the International Symposium on Computer Architecture, Philadel-
phia, PA, May 1977.

5. Lunt T., "Automated Audit Trail Analysis and Intrusion Detection: A Survey," Pro-
ceedings of the 1 1th National Computer Security Conference, October 1988.

6. Spafford, E. H., "The Internet Worm Program: An Analysis," Purdue Technical
Report, CSD-TR-823, November 28, 1988.

20

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

UNLIMITED DISTRIBUTION
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
C1 TECHNICAL REPORT 001

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
National Computer Security Center (11appcable) Ca

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
ATTN: C81

9800 Savage Road
Ft. George G. Meade, MD 20755-6000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, StateandZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)
COMPUTER VIRUSES: PREVENTION, DETECTION, AND TREATMENT

12. PERSONAL AUTHOR(S)

Tinto, Mario
13a. TYPE OF REPORT 13b. TIME COVERED I 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

Technical FROM TOI 900312 22
16. SUPPLEMENTARY NOTATION

Library No.: S232,522

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB GR. NCSC; TCSEC; VIRUS; TROJAN HORSE; TCB; ACCESS CONTROLS;
F__ELD __ROUP __SU_ _R. DAC; MAC; LEAST PRIVILEGE; TRUSTED PATH; AUDITING;

IDENTIFICATION AND AUTHENTICATION

19. ABSTRACT (Continue on reverse side if necessary and identify by block number)
There has been, of late, considerable interest in the topic of computer viruses. The debate has been especially brisk since the
so-called "Internet Virus" of November 1988. At one extreme are those who declare that viruses are an essentially new
phenomenon, against which we are powerless. At the other end of the spectrum are those who treat viruses as more of a
semantics problem than a technical one, claiming that the problems they pose have already been solved. This paper makes
the case that the situation, while certainly not ideal, is not nearly as bleak as some of the alarmists would claim, and that
existing technology and security-oriented procedures are extensible to the virus threat. Further, these are largely captured in
the DoD Trusted Computer System Evaluation Criteria (TCSEC).

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED DISTRIBUTION UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 8b OFFICE SYMBOL

MARY D. SCHANKEN (IncludeArea Code) (301)859-4463 C81 1
DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

U.S. Government Printing Office 1 1991 - 521-145/21421 SECURITY CLASSIFICATION OF THIS PAGE

